THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5220 Complex Analysis and its Applications 2016-2017 Suggested Solution to Assignment 9

Update at 24/4/2017:

- In Q1, the exact value of ρ can be found out.
- In Q3, the imaginary part of $g(z)$ should be $\operatorname{Im} g(i)=\frac{a d-b c}{c^{2}+d^{2}}$ instead of $\operatorname{Im} g(i)=a d-b c$.

1 (a) The required linear fractional transformation is implicitly given by

$$
(z,-\rho, \rho, 1)=\left(w, 0, \frac{2}{3}, 1\right)
$$

The explicit form of the transformation is given by

$$
w=f(z)=\frac{\left(4 \rho-2 \rho^{2}\right) z+2 \rho^{2}-2 \rho}{2(2 \rho-1) z-2(\rho-1)}
$$

To find out the value of ρ, since f maps the straight line containing $-1,0, \frac{2}{3}, 1$ to the straight line containing $-1,-\rho, \rho, 1$, we must have $f(-1)=-1$. This equation is equivalent to

$$
\rho^{2}-3 \rho+1=0
$$

Since $\rho<1$, we have $\rho=\frac{3-\sqrt{5}}{2}$.
(b) Consider the function

$$
g(z)=g(x, y)=\frac{1}{\ln \left(\frac{1}{\rho}\right)} \ln \frac{\sqrt{x^{2}+y^{2}}}{\rho}
$$

defined on the annulus of the form $\rho<|z|<1$. Note that locally it is the real part of the analytic function

$$
h(z)=\frac{1}{\ln \left(\frac{1}{\rho}\right)} \log _{\alpha} \frac{z}{\rho}
$$

for some α. Hence it is harmonic (you may also verify it by direct computation). Furthermore, the function u satisfies the properties that $\left.u\right|_{|z|=\rho}=0$ and $\left.u\right|_{|z|=1}=1$.
Therefore, we consider the function u on D defined by

$$
u(z)=u(x, y)=g(f(z))
$$

This function is harmonic since it is the composition of a harmonic function g with an analytic function f. Also this function satisfies the desired properties.

2 (a) Note that for any $(u, v) \in \mathbb{R}$, we have

$$
h_{u u}+h_{v v}=-e^{-v} \sin u+e^{-v} \sin u=0
$$

Hence h is a harmonic function.
(b) Since h is harmonic and $f(z)=z^{2}$ is an analytic function on $\{(x, y) \mid x, y>0\}$, the function

$$
h(f(x, y))=h\left(x^{2}-y^{2}, 2 x y\right)=e^{-2 x y} \sin \left(x^{2}-y^{2}\right)
$$

is a harmonic function.
3 First of all, recall that the $\operatorname{map} \phi(z)=i \frac{1-z}{1+z} \operatorname{maps}\{|z|<1\}$ conformally onto $\{x+i y \mid y>0\}$. Then g is a conformal self-map of upper half plane if and only if $\phi^{-1} \circ g \circ \phi$ is a conformal selfmap of $\{|z|<1\}$. In particular, since every conformal self-map of $\{|z|<1\}$ is linear fractional transformation, g must also be a linear fractional transformation.
Let $g(z)=\frac{a z+b}{c z+d}$ for some $a, b, c, d \in \mathbb{C}$. Note that g maps the x-axis onto the x-axis. Pick any three real numbers x_{1}, x_{2} and x_{3} such that $g\left(x_{i}\right) \neq \infty$ for $i=1,2,3$. Then $g(z)$ can be implicitly expressed as

$$
\left(g(z), g\left(x_{1}\right), g\left(x_{2}\right), g\left(x_{3}\right)\right)=\left(z, x_{1}, x_{2}, x_{3}\right)
$$

From this we can see that a, b, c and d are real numbers.
Furthermore, one can verify that $\operatorname{Im} g(i)=\frac{a d-b c}{c^{2}+d^{2}}$. Therefore we must have $a d-b c>0$. Finally, we can normalize $g(z)$ to be

$$
g(z)=\frac{\frac{a}{\sqrt{a d-b c}} z+\frac{b}{\sqrt{a d-b c}}}{\frac{c}{\sqrt{a d-b c}} z+\frac{d}{\sqrt{a d-b c}}}=\frac{A z+B}{C z+D}
$$

such that $A D-B C=1$.
4 Recall that the map $\phi(z)=i \frac{1-z}{1+z}$ maps $\{|z|<1\}$ conformally onto $\{x+i y \mid y>0\}$. Therefore, the inverse function $\phi^{-1}(z)=\frac{i-z}{i+z}=-1+\frac{2 i}{i+z}$ maps $\{x+i y \mid y>0\}$ conformally onto $\{|z|<1\}$. Moreover, $\phi^{-1}(i)=0$.

Now suppose the function f satisfies the property that $f(0)=i$. Since $\operatorname{Im}(f)>0$, the map $\phi^{-1} \circ f$ satisfies $|f(z)| \leq 1$. Moreover, $\phi^{-1}(f(0))=\phi^{-1}(i)=0$. As a result, by Schwartz's Lemma,

$$
\begin{array}{rlrl}
\left|\frac{d}{d z} \phi^{-1}(f(0))\right| & \leq 1 \\
\Longrightarrow & & \left|2 i \frac{-1}{(f(0)+i)^{2}} f^{\prime}(0)\right| & \leq 1 \\
\Longrightarrow \quad & \left|f^{\prime}(0)\right| & \leq 2=2 \operatorname{Im} f(0)
\end{array}
$$

For the case where $f(0) \neq i$, define a new function $F(z)$ by

$$
F(z)=\frac{f(z)-\operatorname{Re} f(0)}{\operatorname{Im} f(0)}
$$

Then $F(z)$ is an analytic function which maps $\{|z|<1\}$ to $\{x+i y \mid y>0\}$. Moreover we have $F(0)=i$. By previous result, we have

$$
\begin{aligned}
& & \left|F^{\prime}(0)\right| & \leq 2 \\
& & \left|\frac{f^{\prime}(0)}{\operatorname{Im} f(0)}\right| & \leq 2 \\
\Longrightarrow & & \left|f^{\prime}(0)\right| & \leq 2 \operatorname{Im} f(0)
\end{aligned}
$$

